Calculation of electron transfer reorganization energies using the finite difference Poisson-Boltzmann model.
نویسنده
چکیده
A description is given of a method to calculate the electron transfer reorganization energy (lambda) in proteins using the linear or nonlinear Poisson-Boltzmann (PB) equation. Finite difference solutions to the linear PB equation are then used to calculate lambda for intramolecular electron transfer reactions in the photosynthetic reaction center from Rhodopseudomonas viridis and the ruthenated heme proteins cytochrome c, myoglobin, and cytochrome b and for intermolecular electron transfer between two cytochrome c molecules. The overall agreement with experiment is good considering both the experimental and computational difficulties in estimating lambda. The calculations show that acceptor/donor separation and position of the cofactors with respect to the protein/solvent boundary are equally important and, along with the overall polarizability of the protein, are the major determinants of lambda. In agreement with previous studies, the calculations show that the protein provides a low reorganization environment for electron transfer. Agreement with experiment is best if the protein polarizability is modeled with a low (<8) average effective dielectric constant. The effect of buried waters on the reorganization energy of the photosynthetic reaction center was examined and found to make a contribution ranging from 0.05 eV to 0.27 eV, depending on the donor/acceptor pair.
منابع مشابه
Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics: Accuracy and Precision with Finite-Difference Algorithms.
Violation of energy conservation in Poisson-Boltzmann molecular dynamics, due to the limited accuracy and precision of numerical methods, is a major bottleneck preventing its wide adoption in biomolecular simulations. We explored the ideas of enforcing interface conditions by the immerse interface method and of removing charge singularity to improve the finite-difference methods. Our analysis o...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملAtomic Charge Parameters for the Finite Difference Poisson-Boltzmann Method Using Electronegativity Neutralization.
An optimization of Rappe and Goddard's charge equilibration (QEq) method of assigning atomic partial charges is described. This optimization is designed for fast and accurate calculation of solvation free energies using the finite difference Poisson-Boltzmann (FDPB) method. The optimization is performed against experimental small molecule solvation free energies using the FDPB method and adjust...
متن کاملA molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell.
Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory i...
متن کاملModeling of Transport through Submicron Semiconductor Structures: A Direct Solution of the Coupled Poisson-Boltzmann Equations
We report on a computational approach based on the self-consistent solution of the steady-state Boltzmann transport equation coupled with the Poisson equation for the study of inhomogeneous transport in deep submicron semiconductor structures. The nonlinear, coupled Poisson-Boltzmann system is solved numerically using finite difference and relaxation methods. We demonstrate our method by calcul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 74 3 شماره
صفحات -
تاریخ انتشار 1998